Categorization in fully connected multistate neural network models.
نویسندگان
چکیده
The categorization ability of fully connected neural network models, with either discrete or continuous Q-state units, is studied in this work in replica symmetric mean-field theory. Hierarchically correlated multistate patterns in a two level structure of ancestors and descendents (examples) are embedded in the network and the categorization task consists in recognizing the ancestors when the network is trained exclusively with their descendents. Explicit results for the dependence of the equilibrium properties of a Q=3-state model and a Q=infinity-state model are obtained in the form of phase diagrams and categorization curves. A strong improvement of the categorization ability is found when the network is trained with examples of low activity. The categorization ability is found to be robust to finite threshold and synaptic noise. The Almeida-Thouless lines that limit the validity of the replica-symmetric results, are also obtained.
منابع مشابه
1 O ct 1 99 9 Categorization in fully connected multi - state neural network models
The categorization ability of fully connected neural network models, with either discrete or continuous Q-state units, is studied in this work in replica symmetric mean-field theory. Hierarchically correlated multi-state patterns in a two level structure of ancestors and descendents (examples) are embedded in the network and the categorization task consists in recognizing the ancestors when the...
متن کاملEstimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملEstimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network
This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 60 6 Pt B شماره
صفحات -
تاریخ انتشار 1999